metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis[4-(4*H*-1,2,4-triazol-4-yl)benzoato- $\kappa^2 O, O'$]nickel(II)

Shuzhi Xu,* Wenxin Shao, Miao Yu and Guihua Gong

Jilin Business and Technology College, Changchun 130062, People's Republic of China

Correspondence e-mail: chemxusz@yahoo.cn

Received 27 April 2011; accepted 3 May 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.084; data-to-parameter ratio = 11.9.

In the title compound, $[Ni(C_9H_6N_3O_2)_2(H_2O)_2]$, the Ni^{II} atom lies on a twofold rotation axis and is six-coordinated by two bidentate chelating 4-(1,2,4-triazol-4-yl)benzoate ligands and two water molecules in a distorted octahedral geometry. Intermolecular $O-H\cdots$ N hydrogen bonds link the complex molecules into a two-dimensional network parallel to (010).

Related literature

For general background to the structures and applications of metal complexes, see: Mahata *et al.* (2009); Perry *et al.* (2004); Qin *et al.* (2005); Shi *et al.* (2009). For a related structure, see: Zhu (2010).

Experimental

Crystal data [Ni(C₉H₆N₃O₂)₂(H₂O)₂] $M_r = 471.06$ Monoclinic, C2/c a = 13.5194 (6) Å b = 9.8480 (5) Å c = 14.3234 (7) Å $\beta = 112.293$ (1)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.72, T_{max} = 0.82 $V = 1764.47 (15) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 1.16 \text{ mm}^{-1}$ T = 296 K $0.28 \times 0.24 \times 0.22 \text{ mm}$

4732 measured reflections 1744 independent reflections 1662 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

$R[F^2 > 2\sigma(F^2)] = 0.030$ wR(F^2) = 0.084	H atoms treated by a mixture of independent and constrained
S = 1.13	refinement
1744 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e \ A^{-3}}$
147 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1

Selected	bond	lengths	(Å)
----------	------	---------	-----

Ni1-O1	2.1507 (14)	Ni1-O3	2.0453 (16)
Ni1-O2	2.1240 (14)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{\begin{array}{c} O3 - H3B \cdots N2^{i} \\ O3 - H3A \cdots N3^{ii} \end{array}}$	0.78 (2) 0.79 (2)	2.06 (2) 1.99 (2)	2.836 (2) 2.768 (2)	172 (3) 169 (3)

Symmetry codes: (i) $-x, y, -z + \frac{3}{2}$; (ii) $x + 1, -y, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL*.

We thank Jilin Business and Technology College for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2427).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Mahata, P., Ramya, K. V. & Natarajan, S. (2009). *Inorg. Chem.* 48, 4921–4951.Perry, J. J., McManus, G. J. & Zaworotko, M. J. (2004). *Chem. Commun.* pp. 2534–2535.

Qin, C., Wang, X.-L., Wang, E.-B. & Su, Z.-M. (2005). Inorg. Chem. 44, 7122–7129.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, F. N., Luis, C. S., Trindade, T., Filipe, A. & Rocha, J. (2009). Cryst. Growth Des. 9, 2098–2109.

Zhu, H. (2010). Acta Cryst. E66, m1537.

supplementary materials

Acta Cryst. (2011). E67, m728 [doi:10.1107/S1600536811016643]

Diaquabis[4-(4H-1,2,4-triazol-4-yl)benzoato- $\kappa^2 O, O'$]nickel(II)

S. Xu, W. Shao, M. Yu and G. Gong

Comment

The construction of novel coordination complexes is the current interest in the field of supramolecular chemistry and crystal engineering stemming from their potential applications as functional materials, as well as their intriguing variety of architectures and topologies (Perry *et al.*, 2004; Qin *et al.*, 2005). Heterocyclic carboxylates have often been used as mono-, bi- or multi-dentate ligands to bind transition metal centers, leading to the formation of moderately robust metal–organic coordination frameworks (Mahata *et al.*, 2009; Shi *et al.*, 2009). In this contribution, we selected 4-(1,2,4-triazol-4-yl)benzoic acid (Htyb) as an organic carboxylate ligand, generating the title compound, which is reported here.

In the title compound, the Ni^{II} atom lies on a twofold rotation axis and adopts a distorted octahedral coordination geometry, being coordinated by four carboxylate O atoms from two tyb ligands and two water molecules (Fig. 1, Table 1). The Ni—O bond lengths and the O—Ni—O bond angles are in the normal range (Zhu, 2010). Intermolecular O—H···N hydrogen bonds (Table 2) stabilize the structure and give a two-dimensional network (Fig. 2).

Experimental

The synthesis was performed under hydrothermal conditions. A mixture of Ni(CH₃COO)₂.4H₂O (0.2 mmol, 0.05 g), 4- (1,2,4-triazol-4-yl)benzoic acid (0.4 mmol, 0.075 g), NaOH (0.4 mmol, 0.016 g) and H₂O (15 ml) in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After the mixture was cooled to 298 K, green crystals of the title compound were obtained.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with $U_{iso}(H)$ = $1.2U_{eq}(C)$. H atoms bonded to water O atom were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1-x, y, 3/2-z.]

Fig. 2. View of the layer structure in the title compound, built by O—H…N hydrogen bonds (dashed lines).

Diaquabis[4-(4*H*-1,2,4-triazol-4-yl)benzoato- $\kappa^2 O, O'$]nickel(II)

F(000) = 968

 $\theta=1.0{-}26.0^\circ$

 $\mu = 1.16 \text{ mm}^{-1}$

T = 296 K

Block, green

 $0.28 \times 0.24 \times 0.22 \text{ mm}$

 $D_{\rm x} = 1.773 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1744 reflections

Crystal data

[Ni(C₉H₆N₃O₂)₂(H₂O)₂] $M_r = 471.06$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.5194 (6) Å b = 9.8480 (5) Å c = 14.3234 (7) Å $\beta = 112.293$ (1)° V = 1764.47 (15) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer	1744 independent reflections
Radiation source: fine-focus sealed tube	1662 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
φ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -16 \rightarrow 16$
$T_{\min} = 0.72, \ T_{\max} = 0.82$	$k = -12 \rightarrow 9$
4732 measured reflections	$l = -14 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.084$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.13	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0345P)^{2} + 4.2534P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1744 reflections	$(\Delta/\sigma)_{max} < 0.001$
147 parameters	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.30391 (16)	0.07262 (19)	0.68990 (15)	0.0139 (4)

C2	0.18541 (15)	0.0695 (2)	0.66363 (15)	0.0144 (4)
C3	0.12703 (16)	0.1900 (2)	0.64420 (15)	0.0164 (4)
Н3	0.1616	0.2723	0.6465	0.020*
C4	0.01757 (15)	0.1882 (2)	0.62145 (15)	0.0164 (4)
H4	-0.0217	0.2684	0.6074	0.020*
C5	-0.03212 (15)	0.0645 (2)	0.62014 (15)	0.0132 (4)
C6	0.02504 (16)	-0.0562 (2)	0.64143 (16)	0.0167 (4)
Н6	-0.0092	-0.1381	0.6416	0.020*
C7	0.13424 (16)	-0.0531 (2)	0.66248 (16)	0.0163 (4)
H7	0.1732	-0.1336	0.6759	0.020*
C8	-0.21097 (15)	0.1595 (2)	0.60494 (15)	0.0157 (4)
H8	-0.1890	0.2466	0.6290	0.019*
C9	-0.21064 (16)	-0.0489 (2)	0.55868 (16)	0.0178 (4)
Н9	-0.1883	-0.1332	0.5450	0.021*
N1	-0.14499 (13)	0.05953 (17)	0.59661 (12)	0.0136 (4)
N2	-0.30914 (13)	0.11583 (19)	0.57442 (13)	0.0176 (4)
N3	-0.30856 (13)	-0.01823 (19)	0.54433 (13)	0.0188 (4)
01	0.35080 (11)	0.18546 (14)	0.69937 (11)	0.0162 (3)
O2	0.35618 (11)	-0.03741 (15)	0.70360 (11)	0.0184 (3)
O3	0.50303 (12)	0.10080 (19)	0.89291 (12)	0.0248 (4)
Ni1	0.5000	0.07701 (4)	0.7500	0.01674 (14)
H3A	0.5529 (17)	0.080 (3)	0.9416 (16)	0.025*
H3B	0.4511 (17)	0.113 (3)	0.903 (2)	0.025*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0112 (10)	0.0169 (10)	0.0139 (9)	-0.0001 (7)	0.0050 (8)	-0.0002 (7)
C2	0.0097 (10)	0.0186 (10)	0.0148 (9)	0.0000 (7)	0.0045 (8)	-0.0001 (7)
C3	0.0125 (9)	0.0150 (10)	0.0218 (10)	-0.0022 (8)	0.0066 (8)	0.0014 (8)
C4	0.0114 (9)	0.0149 (10)	0.0221 (10)	0.0024 (7)	0.0056 (8)	0.0033 (8)
C5	0.0073 (9)	0.0189 (10)	0.0132 (9)	-0.0003 (7)	0.0038 (7)	-0.0006 (7)
C6	0.0122 (10)	0.0153 (10)	0.0229 (11)	-0.0022 (8)	0.0069 (8)	-0.0005 (8)
C7	0.0124 (10)	0.0142 (9)	0.0229 (10)	0.0018 (8)	0.0075 (8)	0.0003 (8)
C8	0.0104 (9)	0.0193 (10)	0.0174 (10)	0.0019 (8)	0.0053 (8)	0.0006 (8)
C9	0.0135 (10)	0.0188 (10)	0.0204 (10)	-0.0034 (8)	0.0056 (8)	-0.0026 (8)
N1	0.0087 (8)	0.0164 (8)	0.0156 (8)	-0.0013 (6)	0.0045 (7)	-0.0001 (6)
N2	0.0110 (8)	0.0230 (9)	0.0183 (9)	-0.0001 (7)	0.0049 (7)	0.0005 (7)
N3	0.0118 (8)	0.0232 (9)	0.0203 (9)	-0.0025 (7)	0.0047 (7)	-0.0003 (7)
01	0.0089 (6)	0.0161 (7)	0.0231 (7)	-0.0010 (5)	0.0054 (6)	0.0001 (6)
02	0.0091 (6)	0.0164 (7)	0.0293 (8)	0.0008 (6)	0.0070 (6)	0.0005 (6)
03	0.0090 (7)	0.0468 (10)	0.0188 (8)	0.0075 (7)	0.0054 (6)	0.0057 (7)
Ni1	0.0100 (2)	0.0175 (2)	0.0222 (2)	0.000	0.00558 (16)	0.000

Geometric parameters (Å, °)

C1—O1	1.261 (2)	С7—Н7	0.9300
C1—O2	1.268 (2)	C8—N2	1.303 (3)
C1—C2	1.501 (3)	C8—N1	1.364 (3)

supplementary materials

C1—Ni1	2.458 (2)	C8—H8	0.9300
C2—C7	1.388 (3)	C9—N3	1.296 (3)
C2—C3	1.394 (3)	C9—N1	1.363 (3)
C3—C4	1.389 (3)	С9—Н9	0.9300
С3—Н3	0.9300	N2—N3	1.390 (3)
C4—C5	1.388 (3)	O3—H3A	0.79 (2)
C4—H4	0.9300	O3—H3B	0.78 (2)
C5—C6	1.387 (3)	Ni1—O1	2.1507 (14)
C5—N1	1.433 (2)	Ni1—O2	2.1240 (14)
C6—C7	1.391 (3)	Ni1—O3	2.0453 (16)
С6—Н6	0.9300		
O1—C1—O2	120.58 (18)	C9—N3—N2	107.32 (17)
01—C1—C2	119.38 (17)	C1—O1—Nil	88.14 (11)
02	120.03 (17)	C1—O2—N11	89.16 (12)
OI - CI - NII	61.01 (10)	N11-03-H3A	123 (2)
02-C1-N11	59.79 (10) 174.50 (14)	NII-03-H3B	122(2)
$C_2 = C_1 = N_1$	1/4.30(14)		114(3)
$C_{1} = C_{2} = C_{3}$	119.77 (18)	$03 - N_1 - 03^2$	100.84 (11)
C^{-}	120.05 (18)		92.43 (6)
C3—C2—C1	120.14 (17)	03'—N11—O2	94.54 (6)
C4—C3—C2	120.52 (18)	$O3$ —Ni1— $O2^1$	94.54 (6)
С4—С3—Н3	119.7	$O3^{i}$ —Ni1— $O2^{i}$	92.43 (6)
С2—С3—Н3	119.7	$O2$ —Ni1— $O2^{i}$	115.92 (8)
C5—C4—C3	118.77 (18)	O3—Ni1—O1 ⁱ	86.88 (6)
C5—C4—H4	120.6	O3 ⁱ —Ni1—O1 ⁱ	86.60 (6)
C3—C4—H4	120.6	02—Ni1—O1 ⁱ	177.55 (6)
C6—C5—C4	121.53 (18)	O2 ⁱ —Ni1—O1 ⁱ	61.82 (6)
C6—C5—N1	118.50 (17)	O3—Ni1—O1	86.60 (6)
C4—C5—N1	119.97 (17)	O3 ⁱ —Ni1—O1	86.88 (6)
C5—C6—C7	119.07 (18)	02—Ni1—O1	61.82 (6)
С5—С6—Н6	120.5	O2 ⁱ —Ni1—O1	177.55 (6)
С7—С6—Н6	120.5	O1 ⁱ —Ni1—O1	120.45 (8)
C2—C7—C6	120.32 (19)	O3—Ni1—C1	87.82 (6)
С2—С7—Н7	119.8	O3 ⁱ —Ni1—C1	92.41 (6)
С6—С7—Н7	119.8	O2—Ni1—C1	31.05 (6)
N2	110.45 (18)	O2 ⁱ —Ni1—C1	146.94 (6)
N2—C8—H8	124.8	O1 ⁱ —Ni1—C1	151.16 (6)
N1—C8—H8	124.8	O1—Ni1—C1	30.85 (6)
N3—C9—N1	110.64 (19)	O3—Ni1—C1 ⁱ	92.41 (6)
N3—C9—H9	124.7	$O3^{i}$ —Ni1—C1 ⁱ	87.82 (6)
N1—C9—H9	124.7	O2—Ni1—C1 ⁱ	146.94 (6)
C9—N1—C8	104.57 (17)	O2 ⁱ —Ni1—C1 ⁱ	31.05 (6)
C9—N1—C5	126.49 (17)	O1 ⁱ —Ni1—C1 ⁱ	30.85 (6)
C8—N1—C5	128.93 (17)	01—Ni1—C1 ⁱ	151.16 (6)

C8—N2—N3	107.02 (16)	C1—Ni1—C1 ⁱ	177.99 (9)		
O1—C1—C2—C7	-173.79 (19)	N1—C9—N3—N2	-0.5 (2)		
O2—C1—C2—C7	5.3 (3)	C8—N2—N3—C9	0.4 (2)		
O1—C1—C2—C3	3.7 (3)	O2-C1-O1-Ni1	-5.41 (19)		
O2-C1-C2-C3	-177.18 (18)	C2-C1-O1-Ni1	173.72 (16)		
C7—C2—C3—C4	-1.4 (3)	O1—C1—O2—Ni1	5.47 (19)		
C1—C2—C3—C4	-178.94 (18)	C2—C1—O2—Ni1	-173.65 (16)		
C2—C3—C4—C5	1.1 (3)	C1—O2—Ni1—O3	81.70 (12)		
C3—C4—C5—C6	0.3 (3)	C1—O2—Ni1—O3 ⁱ	-87.13 (12)		
C3—C4—C5—N1	-179.81 (17)	C1—O2—Ni1—O2 ⁱ	177.95 (13)		
C4—C5—C6—C7	-1.4 (3)	C1—O1—Ni1—O3	-91.44 (12)		
N1—C5—C6—C7	178.78 (18)	C1—O1—Ni1—O3 ⁱ	100.00 (12)		
C3—C2—C7—C6	0.4 (3)	C1—O1—Ni1—O2	3.15 (11)		
C1—C2—C7—C6	177.89 (18)	C1—O1—Ni1—O1 ⁱ	-175.80 (12)		
C5—C6—C7—C2	1.0 (3)	O1-C1-Ni1-O3	87.02 (12)		
N3—C9—N1—C8	0.4 (2)	O2—C1—Ni1—O3	-98.36 (12)		
N3—C9—N1—C5	-178.76 (17)	O1—C1—Ni1—O3 ⁱ	-79.81 (12)		
N2—C8—N1—C9	-0.1 (2)	O2—C1—Ni1—O3 ⁱ	94.80 (12)		
N2—C8—N1—C5	178.99 (18)	O1—C1—Ni1—O2	-174.61 (19)		
C6—C5—N1—C9	-24.4 (3)	O1—C1—Ni1—O2 ⁱ	-178.00 (10)		
C4—C5—N1—C9	155.7 (2)	O2—C1—Ni1—O2 ⁱ	-3.4 (2)		
C6—C5—N1—C8	156.7 (2)	O1—C1—Ni1—O1 ⁱ	7.5 (2)		
C4—C5—N1—C8	-23.2 (3)	O2—C1—Ni1—O1 ⁱ	-177.86 (11)		
N1—C8—N2—N3	-0.2 (2)	O2—C1—Ni1—O1	174.61 (19)		
Symmetry codes: (i) $-x+1$, y , $-z+3/2$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \!$
O3—H3B···N2 ⁱⁱ	0.78 (2)	2.06 (2)	2.836 (2)	172 (3)
O3—H3A…N3 ⁱⁱⁱ	0.79 (2)	1.99 (2)	2.768 (2)	169 (3)
Symmetry codes: (ii) - <i>x</i> , <i>y</i> , - <i>z</i> +3/2; (iii) <i>x</i> +1, - <i>y</i> , <i>z</i> +1/2	/2.			

Fig. 2